The Bergman Kernel on the Intersection of Two Balls in C2

نویسنده

  • DAVID E. BARRETT
چکیده

We obtain an asymptotic expansion and some regularity results for the Bergman kernel on the intersection of two balls in C2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Bergman Kernel on the Intersection of Two Balls in C

We obtain an asymptotic expansion and some regularity results for the Bergman kernel on the intersection of two balls in C.

متن کامل

$L^p$ boundedness of the Bergman projection on some generalized Hartogs triangles

‎In this paper we investigate a two classes of domains in $mathbb{C}^n$ generalizing the Hartogs triangle‎. ‎We prove optimal estimates for the mapping properties of the Bergman projection on these domains.

متن کامل

Identification of Hazardous Situations using Kernel Density Estimation Method Based on Time to Collision, Case study: Left-turn on Unsignalized Intersection

The first step in improving traffic safety is identifying hazardous situations. Based on traffic accidents’ data, identifying hazardous situations in roads and the network is possible. However, in small areas such as intersections, especially in maneuvers resolution, identifying hazardous situations is impossible using accident’s data. In this paper, time-to-collision (TTC) as a traffic conflic...

متن کامل

Harmonic Bergman Kernel for Some Balls

We treat the complex harmonic function on the Np–ball which is defined by the Np–norm related to the Lie norm. As a subspace, we treat Hardy spaces and consider the Bergman kernel on those spaces. Then, we try to construct the Bergman kernel in a concrete form in 2–dimensional Euclidean space. Introduction. In [2], [4], [6] and [7], we studied holomorphic functions and analytic functionals on t...

متن کامل

New Formulas of the Bergman Kernels for Complex Ellipsoids in C

We compute the explicit formula of the Bergman kernel for a nonhomogeneous domain {(z1, z2) ∈ C2 : |z1|1 + |z2|2 < 1} for any positive integers q1 and q2. We also prove that among the domains Dp := {(z1, z2) ∈ C2 : |z1|1 + |z2|2 < 1} in C2 with p = (p1, p2) ∈ N2, the Bergman kernel is represented in terms of closed forms if and only if p = (p1, 1), (1, p2), or p = (2, 2).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003